
MinervaDB

Building MySQL
Infrastructure for
Performance and

Reliability

1

MinervaDB
About me

Name - Shiv Iyer

Occupation - Founder @ MinervaDB, Database Systems Architect

Technology Focus:

● Open Source Database Systems
● MySQL
● MariaDB
● PostgreSQL
● ClickHouse
● Database Systems Performance, Scalability and Data SRE

2

MinervaDB
Interesting things to know

● Database Infrastructure Operations get complex as your
business grows, Fast growing companies Database Systems
are built to scale proactively.

● Do not plan to scale your Database Infrastructure
operations by eyeballs - Automate and hire Data Ops.
geeks who are specialists in Database Systems Operations.

● Cost of Database Systems outage for a business:
○ Data Infrastructure outage impacts entire revenue ecosystem and

customer loyalty - Cost to Customer Acquisition is significantly
high many SaaS business

○ Extended work hours for your employees - Higher attrition is no good

 3

MinervaDB
This is how it begins for everyone ...

4

MySQL Database Instance

● Single database instance for both READS
and WRITES

● Vertically scaled and optimized
● Many MySQL system variables are tuned

reactively
● Indexes are created very generously
● Everyone is a DBA here
● Backups are mostly not audited or there

is absolutely no infrastructure to audit
backups regularly

● I call this setup an optimistic Database
Infrastructure Operations management -
Strong belief from everyone that nothing
will ever fail

MinervaDB
Everything changes with time

Remember that changes are a normal part of Database Systems
operations, It is also amazing to see how Database
Infrastructure grow from silo to distributed and redundant
platforms addressing performance, scalability, high
availability, fault-tolerant, self-healing, reliable and
secured transaction processing engines..

“The only constant in life is change”-Heraclitus

5

MinervaDB
Business growth and strategic thoughts

● Single-point-of-failure outage (human error or
Infrastructure crash)

● Performance - Too much READs and WRITEs going on a single
Database Systems Infrastructure

● More data is operationally expensive on a single MySQL
instance

● Need a dedicated and accountable Database Infrastructure
Operations expert

● Let's build Database Systems operations for growth
● Reliability is above performance as we grow

6

MinervaDB
What you expect from Database Infra.?

● Optimal performance using System Resources efficiently
● Scalable - Vertically and Horizontally
● Robust DR setup

○ High performance backup and restore
○ Backup retention in remote DC / site and cloud
○ Infrastructure for regular auditing of MySQL backup

● Highly Available, Distributed, Redundant, Fault-Tolerant,
Self-Healing and Secured

● Reliability over performance
● Database Infrastructure Operations visibility -

Observability and Resilience

7

MinervaDB
High Availability and "Nines SLAs"

Build your Database Infrastructure for Reliability !

8

Availability % Downtime Per Year

90% ("one 9") 36.53 days

99% ("two 9s") 3.65 days

99.9% ("three 9s") 8.77 hours

99.99% ("four 9s") 52.60 minutes

99.999% ("five 9s") 5.26 minutes

99.9999$ ("six 9s") 31.56 seconds

MinervaDB
Performance of Database Systems Ops.

● Tuning Linux for MySQL performance
● Tuning MySQL for performance
● Cost efficient SQL and efficient indexing (more is not

good for indexing strategy)
● Optimal disk I/O, partitioning and archiving for your

MySQL infrastructure
● Replication for MySQL Performance and Scalability
● Choosing MySQL storage engines for performance
● Time-series Performance Monitoring Infrastructure for

MySQL operations

9

MinervaDB
Tuning Linux for MySQL Performance

● Invest more on RAM for MySQL Server transaction
performance and configure Linux to do minimal swapping /
reduce the I/O operations is the goal

Set the swappiness value as root
echo 1 > /proc/sys/vm/swappiness

Verify the change
cat /proc/sys/vm/swappiness
1

10

We don't recommend value "0" which
disables swapping completely and value 1
does a very minimal swapping. The
configuration can be persisted in
/etc/sysctl.conf:

vm.swappiness = 1

MinervaDB
Tuning MySQL Server for Performance

Rule 1 - Over tuning is definitely no good for MySQL
performance, We are tuning MySQL Server mostly for I/O Ops.
velocity and there is no magic MySQL system variables exist
to make your queries faster. OPTIMAL QUERIES AND EFFICIENT
INDEXING MAKES MYSQL FASTER.

Rule 2 - Tune MySQL System Variables which can definitely
improve your Database Infrastructure Operation performance
and it's strongly recommended to tune only one parameter at
a time to avoid serious mistakes / confusions.

11

MinervaDB
What I look for immediately after MySQL
installation

● innodb_buffer_pool_size - 80% of total RAM
● innodb_flush_log_at_trx_commit - 1 for MySQL Master and 0

/ 2 (less reliable) for MySQL Slaves
● innodb_log_file_size - Not more than 2GB for faster MTTR
● innodb_flush_method - O_DIRECT to avoid double buffering

Recommended read - MySQL 5.7 Performance Tuning Immediately
After Installation

12

https://minervadb.com/index.php/2018/02/28/mysql-5-7-performance-tuning-immediately-after-installation/
https://minervadb.com/index.php/2018/02/28/mysql-5-7-performance-tuning-immediately-after-installation/

MinervaDB
MySQL System Variables which allocate
Memory per connection / thread
● sort_buffer_size
● read_rnd_buffer_size
● join_buffer_size
● read_buffer_size
● tmp_table_size

NOTE - Setting these MySQL System Variables very high causes
excessive swapping and in extreme cases MySQL Server will
crash continuously

13

MinervaDB
Please do not tune sort_buffer_size

● MySQL system variable sort_buffer_size is a per session
buffer, i.e. memory is assigned per connection / thread.
So to conclude large sort_buffer_size is definitely a
serious problem.

Recommendation - I never bother to change this value,
There are several books / posts which advise you to
closely monitor MySQL status variable sort_merge_passes
and if it increases then tune sort_buffer_size , In
reality it just damage your MySQL performance.

14

MinervaDB

Configuring InnoDB for Disk I/O
Performance

15

MinervaDB
Configuring InnoDB System Variables when
using non-rotational storage devices

● innodb_checksum_algorithm - crc32 uses a faster checksum algorithm and
is recommended for faster storage systems

● Disable innodb_flush_neighbors for performance

● You can carefully increase innodb_io_capacity for performance (default -
200) after successful benchmarking

● You can carefully increase innodb_io_capacity_max for performance
(default - 2000) after successful benchmarking

16

MinervaDB
Configuring InnoDB System Variables
when using non-rotational storage
devices

● Disable innodb_log_compressed_pages to reduce the logging

● Configure innodb_page_size very close to storage device block size

● Optimally configure innodb_log_file_size to maximize caching and write
combining

● Configure binlog_row_image to "minimal" to reduce logging

● Increase innodb_io_capacity to avoid backlogs which causes bottleneck to
the throughput

17

MinervaDB
Configuring InnoDB System Variables
when using non-rotational storage
devices

● By default innodb_log_compressed_pages are enabled to prevent the
corruption that can occur if a different version of zlib
compression algorithm is used during recovery, If you are
confident zlib version will not change then disable
innodb_log_compressed_pages to reduce redo log generation for
workloads that modify compressed data.

18

MinervaDB
How to measure MySQL performance ?

● Response Time - The business care about only Response
Time of the transaction, Cache Hit Ratio makes no sense
for them at all

● Why bother about throughput then ?
○ High performance CPU, Memory and Disk / SSDs does matter for

capacity planning / sizing of transaction performance
○ Building MySQL infrastructure for performance:

■ Sequential I/O ops. files - Binary logs, REDO logs (ib_logfile*), slow query
log, audit log and error log (HDD with battery-backed write-cache)

■ Random I/O ops. files - innodb data files, SSDs or NVRAM card, or high RPM

spindle disks like SAS 15K or 10K, with hardware RAID controller and

battery-backed unit.

19

MinervaDB
Linux utilities to troubleshoot the
performance

Monitoring Linux process using "top"

● Process ID
● CPU usage
● Memory usage
● Swap memory
● Cache size
● Buffer size
● User commands

20

MinervaDB
Linux utilities to troubleshoot the
performance

VmStat

● Used to monitor virtual memory statistics

● VmStat is shipped with Sysstat package

● You can monitor following statistics from VmStat:

○ System processes
○ CPU activity
○ Virtual memory
○ Disk operations
○ Kernel threads
○ I/O blocks
○ Interrupts

21

MinervaDB
Linux utilities to troubleshoot the
performance
Lsof

● Monitor the list of open files and their related process

● This command is used usually when you have to monitor which files are in use and
the disk cannot be unmounted due to the error files are opened

● The following statistics are displayed with Lsof command:

○ Processes
○ devices
○ disk files
○ Network sockets
○ Pipes

22

MinervaDB
Linux utilities to troubleshoot the
performance

Iotop

● The real-time disk I/O statistics and processes can be monitored with
Iotop:

○ Processes
○ User
○ Disk Reads
○ Disk Writes
○ I/O %
○ Command used

23

MinervaDB
Linux utilities to troubleshoot the
performance

IoStat

● Monitor input and output statistics of storage devices

● The following statistics are delivered from IoStat command:

○ Devices details / information
○ TPS
○ Blocks read/second
○ Blocks written/second
○ Total blocks read
○ Total blocks written

24

MinervaDB
Troubleshooting MySQL query performance

Configuring MySQL System Variables for troubleshooting query
performance:

● slow_query_log #log slow queries
● long_query_time #log queries which takes more than "X" seconds
● log_queries_not_using_indexes # log queries not using indexes
● log_slave_slow_statements # log slow queries in replication slave

P.S. - Slow Queries are only added to the slave's slow query log only when they are logged
in statement format in the binary log, i.e. when binlog_format=STATEMENT is set, or when
binlog_format=MIXED is set and the statement is logged in statement format.

25

MinervaDB
Troubleshooting MySQL Performance with
Slow Query Log

● Slow Query Log consist of queries that took more than long_query_time in
seconds to execute.

● Most popular tools to annotate MySQL slow query log:
○ mysqldumpslow
○ pt-query-digest (Percona Toolkit)

● Orchestrating MySQL slow query log parameters for higher visibility
○ To log expensive MySQL administrative statements enable log_slow_admin_statements
○ To log those queries which are not using indexes enable log_queries_not_using_indexes

26

MinervaDB
Slow Query log interpreted with
pt-query-digest

27

MinervaDB
Interpreting Slow Query Log
● Query_time - The SQL execution duration in seconds
● Lock_time - The time to acquire locks in seconds
● Rows_sent - Number of rows sent to client
● Rows_examined - Number of rows examined by the optimizer

28

MinervaDB
Handling MySQL Growth in Terabytes

● Identify transaction intensive Tables proactively to
strategize MySQL Database growth plans

● Large tables are operationally expensive - Query / Index
performance, Scalability and Backup & Restoration

● Avoid single-point-of-failure on large tables:
○ Building Database Systems infrastructure distributed, redundant,

fault-tolerant and self-healing:
■ Replication for scalability and HA

● Asynchronous Replication
● Synchronous Replication

■ Distribute READs and WRITEs across nodes via load-balancers in
MySQL Replication infrastructure for Database Ops. reliability

29

MinervaDB
MySQL replication topologies

30

● Scale-out
○ Standard READ-ONLY Slaves to split READs exclusively

■ Slaves for running super expensive sub-optimal queries
■ Slaves dedicated to run SORT / SEARCH intensive SQLs

● Aggregation SQLs
■ Slaves for fulltext searches
■ Slaves for warehouse queries

● Building distributed Data Ops. for WebScale
○ Slaves for Data Archiving (Horizontal Shards)
○ Slaves for DR / Backup
○ Delayed Slaves for Rollback

MinervaDB

31

MySQL Replication to Scale-out

Master

Slaves

Transaction

WRITES

RE
AD
S

MinervaDB
Distributed Relay Slave Replication

32

 Master

India

 Master

Singapore

Slave Slave

MinervaDB

33

MySQL Ring Replication

● Master can have many slaves
● Slave can have only one master
● Log_slave_updates and server_id is configured in MySQL

Ring Replication

MinervaDB

34

MySQL Ring Replication

MySQL 1

MySQL 3

MySQL 2

MySQL 4

MinervaDB

35

Why I don't recommend Ring Replication?

● Super sensitive and not reliable
○ Every member of the ring has its own binlog position
○ #MySQL 4 fails, binlog position is lost

P.S. - Highly compelling multi-master replication
topology, Many DBAs in the past had been the victim of
first impression

MinervaDB

36

How to use MySQL replication for
performance ?

● Splitting READs and WRITEs
○ Most of websites READ intensive, The users are either reading blogs

/ posts or checking offers of products / services to buy. The UPDATE
happens only when they comment or buy specific article / service.

○ Use slaves for warehouse and analytics queries

MinervaDB

37

 MySQL Replication for Performance

Master

Slave 2 Slave 3Slave 1 Slave 4

Load Balancer Client WRITE

READ

R
E
A
D

REA
D

MinervaDB
Why attempting scaling WRITEs is not
worth ?

If you can scale WRITEs successfully then you have taken care of the biggest
bottleneck of building web-scale database infrastructure operations. But,
How much true is this ? Imagine you are solving this with an clustering
solution which splits WRITEs across two instances W1 and W2. In reality, you
are repeating writes on both machines. Yes, All WRITEs on W1 will be
repeated on W2 and all WRITEs on W2 will be repeated on W1. To make this
solution even more scary, When there is a database outage both instance will
not have reliable data, So how can scaling WRITEs really worth ? I don't
agree !

38

MinervaDB

39

Using MySQL replication for disaster
recovery

● MySQL replication is an high availability solution from
MySQL, HA cannot be supplemented with DR (Disaster Recovery)

● How to use MySQL replication node for DR?
○ Logical / cold backup of MySQL database replication node (master / slave)

using mysqldump (always use --lock-all-tables)
○ Percona XtraBackup - Hot backup solution from Percona Server
○ Zero data loss DR solution using Galera Cluster

MinervaDB

40

Zero data loss DR solution using Galera Cluster

ACTIVE PASSIVE MASTER - MASTER CLUSTER

G1

G2 G3
G2

WAN

garb

Primary Site
Disaster Recovery Site

Galera Arbitrator

MinervaDB

41

ACTIVE PASSIVE MASTER - MASTER CLUSTER

Failover strategy - Redirect data traffic totally to DR site if there
is an outage

Fallback strategy - Redirect data traffic back to primary site

Advantages - Failover and Fallback without any downtime

Disadvantages - Expensive, Failover site will be idle most of time
(Oversized infra.) and low / reliable latency network infrastructure
to avoid the performance bottlenecks

MinervaDB
Data Ops. geek checklist for success

● Reliable MySQL Support
● Observability & Resilience Infrastructure- Monitoring

MySQL performance proactively
● Robust backup strategy
● Reliable and self-healing Database Infrastructure

Operations
● Database security and privacy
● Invest in education and new skills - Attend conferences,

webinars, follow blogs and books

42

MinervaDB
How can you contact me ?

Email - shiv@minervadb.com

Twitter - https://twitter.com/thewebscaledba

LinkedIn - https://www.linkedin.com/in/thewebscaledba/

Phone / MinervaDB Toll Free - (844) 588-7287

43

