
MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

PostgreSQL Internals 
and 

Performance Optimization



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Speaker Bio

• Name: Shiv Iyer 
• Occupation: Founder and Principal of MinervaDB 
• Technology focus:

• Open Source Database Systems 
• Transaction processing systems
• Database Systems optimizers and internals 
• Performance optimization and tuning
• Capacity Planning and Sizing 
• MySQL – InnoDB and RocksDB (MyRocks)
• MariaDB
• PostgreSQL



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

The scope of the talk 

• PostgreSQL Architecture and Internals 
• PostgreSQL Query Performance Troubleshooting
• Optimal Indexing
• Missing Indexes
• Unused Indexes

• Configuring PostgreSQL for Performance 
• PostgreSQL Partitioning



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Safe Harbor Statement 

The following is intended to outline our general direction in PostgreSQL 
infrastructure operations. It is intended for information purposes only, 
and may not be incorporated into any contract. It is not a commitment 
to deliver any material, code, or functionality, and should not be relied 
upon in making purchasing decisions. The development, release, and 
timing of any features or functionality described for MinervaDB’s 
products, consulting, support and remote DBA services remains at the 
sole discretion of MinervaDB Inc.



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

PostgreSQL Architecture components 

PostgreSQL is a multi-process Relational Database Management System:
• Server processes 

• Archiver 
• Statistics collector 
• WAL writer
• Background writer 
• Autovacuum launcher
• Checkpointer 
• Logging collector

• Client processes
• Postgres backend processes 

• Memory structure 
• Shared memory area
• Local memory area

• Database Cluster



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

PostgreSQL Architecture Explained



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

PostgreSQL Architecture and Internals

Backend Process

Backend Process

Backend Process

Handles 
incoming 
connections

PostgreSQL Server Processes
§ Archiver
§ Statistics collector 
§ WAL writer
§ Background writer 
§ Autovacuum launcher
§ Checkpointer 
§ Logging collector

Database Cluster 

PostgreSQL Memory Structure
• Shared memory area 
• Local memory area

Postmaster



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

PostgreSQL Processes 

Background process Description

Archiver Process accountable for archive logging

Statistics collector Statistics data (pg_stat_activity, pg_stat_user_indexes etc.) required for troubleshooting PostgreSQL more 
intuitively is collected by the process Statistics Collector

WAL writer Process to flush WAL data from WAL buffer to a persistent storage / disk

Background writer Process to flush dirty pages in shared buffer pool to a persistent storage / disk ( In PostgreSQL 9.1 or earlier, 
Background writer was also accountable for checkpoint process )

Autovacuum launcher Process involved in periodical auto vacuum activity 

Checkpointer Checkpoint process ( included from PostgreSQL 9.2)

Logging collector Process to record error incidents to log files



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

PostgreSQL Memory Structure explained

Backend Process

Backend Process

Backend Process

Handles 
incoming 
connections

Database Cluster 

PostgreSQL Memory Structure
• Shared memory area – Consumed by all process of PostgreSQL
• Local memory area – Allotted to each individual PostgreSQL process 

PostgreSQL Server Processes
Postmaster



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Shared Memory Area

Shared Memory Area Description 

Shared buffer pool PostgreSQL caches pages from tables and indexes to shared buffer pool from 
persistent storage / disk for optimal performance.  

WAL buffer To ensure zero data loss, PostgreSQL retains transaction logs in WAL file. The WAL 
data is stored in WAL buffer before writing to a persistent storage.

Commit log To ensure data concurrency and reliability, the commit log maintains states of entire 
transactions – in-progress, committed and aborted. 



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Local Memory Area 
Local Memory Area Description 

Temporary buffer The local buffer area used to access temporary table data.

Work_mem The local buffer area used by sort memory operations and hash tables 
before using temporary data files. 

Maintenance_work_mem The local buffer area used for maintenance operations like adding 
foreign keys to existing tables, creating indexes, vacuum etc. 



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Building PostgreSQL Infrastructure Operations 
for Performance 



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Why performance tuning is a journey ? 

• Measure PostgreSQL query performance to understand Data Access Path:
• Data logic changes with new business rules, This internally sometimes conflicts with PostgreSQL statistics and 

execution plans.
• PostgreSQL tools used to troubleshoot performance

• Indexes causes pain with the data volume growth, We may have to create or remove indexes on a 
regular interval for retaining an optimal PostgreSQL performance. 

• PostgreSQL infrastructure footprint (database volume and transactions) grows continuously with 
your business velocity and acceleration, So every fast growing company should plan building 
database infrastructure capacity for the future to avoid unpleasant performance bottlenecks at a 
scale.  

• Larger tables are operationally expensive and exhaustive, Table partitioning efficiently 
compartmentalize data across multiple partitions to distribute I/O and also address database 
archiving.



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Troubleshooting PostgreSQL query performance 
using pg_stat_statements 



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

pg_stat_statements  

• Officially bundled with PostgreSQL for troubleshooting the
performance.
• pg_stat_statements is also known as PostgreSQL contrib extension, 

Which can found in contrib directory of PostgreSQL distribution.
• pg_stat_statements does not record individual queries, It 

parameterizes them and save as aggregated reports.
• By using pg_stat_statements, You can measure PostgreSQL 

performance by “Response Time”.
• We strongly recommend you to increase OS shared memory limits 

while using pg_stat_statements for optimal performance.  



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

How to us pg_stat_statements? 



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Install and configure pg_stat_statements 

On Debian / Ubuntu:
# Replace 9.X with your installed Postgres version: 

sudo apt-get install postgresql-contrib-9.X

On CentOS / RedHat:
sudo yum install postgresql-contrib  

Configure PostgreSQL adding following entries to postgres.conf: 

shared_preload_libraries = 'pg_stat_statements’ 
# You can increase the max size of the query strings Postgres records if you have large complicated queries executed in PostgreSQL infra.  
track_activity_query_size = 2048 
# Record queries generated by stored procedures also 
pg_stat_statements.track = all



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Example

SELECT campaign_master.campaign_category,
campaign_master.campaign_id,
campaign_master.publisher_id
FROM campaign_master,
publisher_master
WHERE campaign_master.publisher_id =publisher_master.publisher_id  
AND 
publisher_master.publisher_category = ‘Social Gaming’; 



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

pg_stat_statements parameterize the queries

SELECT campaign_master.campaign_category, 
campaign_master.campaign_id, 
campaign_master.publisher_id 
FROM campaign_master, 
publisher_master 
WHERE campaign_master.publisher_id =publisher_master.publisher_id  
AND 
publisher_master.publisher_category = ‘?’; 



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Monitoring PostgreSQL query performance
with pg_stat_statements 
SELECT
(total_time / 100 / 60) as Total,
(total_time/calls) as Avg,
query
FROM pg_stat_statements
ORDER BY 1
DESC LIMIT 100;

# In the SQL above we have captured queries on “Response Time” , The total latency of individual 
queries is reported in minutes and average latency on milliseconds.



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Output from pg_stat_statements 

Total     | Avg    | query
----------+--------+---------
936.72 | 91.86 | SELECT campaign_category FROM campaign_master...
513.18 | 16.38 | SELECT campaign_id FROM campaign_master...
(2 rows)



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

PostgreSQL Auto Explain 

• Automatically logs the execution plans of slow queries in PostgreSQL 
without you manually running EXPLAIN.
• A module in the contrib package. 
• Can be enabled in postgresql.conf by setting parameter  

auto_explain.log_min_duration and the library for all sessions by 
setting shared_preload_libraries = auto_explain
• We strongly recommend you not to enable auto_explain.log_analyze 

in production unless you are really confident about handling extra 
performance bottleneck due to this setting.



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

2020-07-09 17:26:54.645 IST [15129] postgres@postgres LOG:  duration: 0.292 ms plan:

SELECT campaign_master.campaign_category,
campaign_master.campaign_id,
campaign_master.publisher_id
FROM campaign_master,
publisher_master 
WHERE campaign_master.publisher_id =publisher_master.publisher_id  
AND 
publisher_master.publisher_category = ‘Social Gaming’; 

Aggregate  (cost=26.34..26.35 rows=168 width=8) (actual time=4.278..0.278 rows=1 loops=1)

->  Hash Join  (cost=19.70..25.93 rows=11364 width=0) (actual time=5.215..0.267 rows=128 loops=1)

Hash Cond: (publisher_master.publisher_id = campaign_master.publisher_id )  

->  Seq Scan on pg_index (cost=0.00..5.80 rows=3164 width=4) (actual time=0.014..0.042 rows=1128 loops=1)

Filter: indisunique

Rows Removed by Filter: 18

->  Hash  (cost=15.42..15.42 rows=342 width=4) (actual time=6.166..0.166 rows=4367 loops=1)

Buckets: 1024  Batches: 1  Memory Usage: 7MB

->  Seq Scan on pg_class (cost=0.00..15.42 rows=3142 width=4) (actual time=3.007..0.106 rows=4367 loops=1)



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Monitoring index usage 

• Optimal indexing is very important for PostgreSQL performance 
• You can efficiently troubleshoot PostgreSQL performance with 

following data: 
• Missing indexes
• Unused indexes

• Enable PostgreSQL statistics collector to monitor missing and unused 
indexes by setting following parameters: 
• track_activities
• track_counts
• track_functions 
• track_io_timing



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Missing indexes 

SELECT
relname,
seq_scan - idx_scan AS too_much_seq,
CASE 
WHEN 
seq_scan - coalesce(idx_scan, 0) > 0
THEN 
'Missing Index?’ 
ELSE 
'OK’ 
END,
pg_relation_size(relname::regclass) AS rel_size, seq_scan, idx_scan 
FROM 
pg_stat_all_tables 
WHERE schemaname = 'public’ 
AND pg_relation_size(relname::regclass) > 80000
ORDER BY
too_much_seq DESC;



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Unused indexes 

SELECT
indexrelid::regclass as index,
relid::regclass as table,
'DROP INDEX ' || indexrelid::regclass || ';' as drop_statement 
FROM pg_stat_user_indexes 
JOIN pg_index USING (indexrelid)
WHERE idx_scan = 0
AND 
indisunique is false;



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

PostgreSQL partitioning 

• Efficient distribution of data and transaction I/O.
• Most often / frequently accessed data and indexes can be partitioned 

for performance by efficiently fitting in the memory.
• Partitioning enables high performance sequential scan of records in 

the table compared to using an index and random access reads 
scattered across the whole table. 
• PostgreSQL partition types:

• RANGE: Data in Tables partitioned over a range of values. 
• HASH: Tables Partitioned by specifying a modulus and a remainder for each partition.
• LIST: Tables partitioned by explicitly listing which key values appear in each partition.



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Configuring PostgreSQL for Performance

• shared_buffers 
• PostgreSQL support double buffering, i.e. PostgreSQL uses its native internal buffer and kernel buffered 

IO. Increasing shared_buffers in a READ intensive infrastructure will benefit in performance, fitting 
entire database in RAM is good. 

• wal_buffers
• PostgreSQL writes WAL records to wal_buffers. You can set higher values for wal_buffers if expected 

more concurrent session with heavy WRITEs / UPDATEs.

• effective_cache_size
• The effective_cache_size is how much memory is available for disk caching by the operating system and 

within the database itself , This parameter is used by PostgreSQL optimizer / query planner to decide 
whether the execution plans can fit in the memory, We strongly recommend to set this value up to 80% 
of the RAM and setting this value too low may influence query planner not to use few indexes at all 
causing serious performance bottleneck.



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Configuring PostgreSQL for Performance 

• work_mem
• work_mem configuration parameter makes complex PostgreSQL SORT / SEARCH operations optimal. 

But, This is a “per session” (allocated exclusively for each concurrent SORT operations ) configuration 
parameter and so we strongly recommend to keep this value low to avoid excessive swapping and out-
of-memory errors. The default value is 4MB. 

• maintenance_work_mem 
• maintenance_Work_mem defines how much memory is allocated for routine Database 

Infrastructure Operations maintenance activities like adding foreign keys to existing tables, 
index operations (CREATE / ALTER / DROP) and VACUUM. Since PostgreSQL maintenance 
operations do not run concurrently you can set this value definitely higher than work_mem. 
The default value is 64MB



MinervaDB Inc., 340 S LEMON AVE #9718 WALNUT 91789 CA, US

Contacts

• Email: shiv@minervadb.com
• Twitter: https://twitter.com/thewebscaledba
• Facebook page: https://www.facebook.com/DataOpsGeek/
• GitHub: https://github.com/shiviyer
• Contact MinervaDB: contact@minervadb.com
• Contact MinervaDB Support: support@minervadb.com

http://minervadb.com
https://twitter.com/thewebscaledba
https://www.facebook.com/DataOpsGeek/
https://github.com/shiviyer
http://minervadb.com
http://minervadb.com

